#
#

Predicción de tiempos de fabricación mediante series temporales

El tiempo de fabricación de un elemento en una línea de producción es, debido a la naturaleza propia del proceso, un valor que no debe variar demasiado en el tiempo, tan solo debe verse afectado de manera significativa por la aparición de alguna anomalía. Esto lo convierte en el candidato idóneo para ser la base de la predicción inteligente. Veamos cómo.

Partimos de la necesidad de estudiar y analizar el comportamiento del proceso de fabricación de elementos específicos, teniendo como datos únicamente los tiempos de fabricación de cada uno de ellos. ¿Es posible obtener información útil sólo con los tiempos de fabricación? Por supuesto que si. El tiempo de fabricación es un indicador claro de multitud de situaciones, pero fundamentalmente se trata de una variable que se ve muy afectada por las posibles anomalías que sufre el proceso en cualquier área.

Tanto si un operario tiene un problema a la hora de ejecutar una operación debido a que no ha sido formado adecuadamente, como si se ha producido un problema logístico a la hora de despachar los materiales necesarios para realizar la tarea, el tiempo de fabricación se verá afectado de manera directa.

Sin embargo, el tiempo de fabricación tiende a ser lo más parecido posible al tiempo estimado de fabricación para cada tarea. Esto hace que, por su propia naturaleza, la distribución de los tiempos de fabricación sea estacionaria, lo que la hace ideal para poder detectar anomalías, tendencias y fluctuaciones, así como para poder predecir sus valores futuros.

El objetivo es analizar y tratar de explicar anomalías y tendencias en el proceso de fabricación de unos elementos contando tan sólo con el tiempo de fabricación como variable principal. Al mismo tiempo, se pretende aprovechar este análisis para poder llevar a cabo previsiones.

Determinando unidades de trabajo análogas. El primer problema a resolver es determinar aquellas unidades de trabajo que sean análogas las unas con las otras, de manera que se puedan comparar. En industria manufacturera se suele trabajar con el concepto de orden de producción que se ejecuta sobre un determinado elemento. Sin embargo, una orden de producción suele estar formada por un conjunto de operaciones, aquellas que hay que llevar a cabo sobre el material. En este caso, son las operaciones las que determinan la unidad de trabajo y no las órdenes de producción. Es el tiempo de ejecución de una misma operación a lo largo del tiempo lo que podemos estudiar como una serie temporal.

Análisis autoregresivo y métodos estocásticos. Existen multitud de métodos para el análisis autoregresivo (AR), pero centrándonos en métodos estocásticos, existen una serie de modelos basados en AR que son muy útiles, fáciles de implementar y que, normalmente, arrojan buenos resultados para este tipo de estudios. Se trata de los Modelos de Autorregresión con Medias Móviles (ARMA), que añaden un modelo de efecto por medias móviles al básico de autorregresión; los Modelos de Autorregresión Integrados con Médias Móviles (ARIMA), que incluyen un componente para la corrección de series no estacionarias; o los modelos Estacionales de Autorregresión Integrados con Médias Móviles (SARIMA), donde se incluye la posibilidad de estudiar series que fluctúan a lo largo de diferentes estaciones.

Una solución: metodología Box-Jenkins. La solución a nuestro problema pasa por aplicar la metodología Box-Jenkins, fundamentada en la identificación de los modelos candidatos y la estimación de sus parámetros, y en el análisis de la bondad de ajuste del modelo a través del estudio de los residuos, conocido como ruido blanco.

El estudio de series temporales no sólo es útil para la obtención de modelos de previsión de valores, sino también para la detección de anomalías. En nuestro caso de estudio se obtuvo un método por el cual, para cada una de las operaciones bajo análisis, se obtiene el valor estimado del tiempo de fabricación para la próxima pieza.

Pero, al mismo tiempo, para cada valor observado, y dependiendo de la diferencia entre dicho valor y el previsto por el modelo, se puede establecer un mecanismo muy versátil para la detección de anomalías.

En nuestro caso, se usó este método para la implementación de un mecanismo por el cual, una vez registrado el tiempo real de fabricación de una pieza, y comparándolo con el que en su día se estimó, se considere una anomalía o no dependiendo de si la diferencia es mayor a la estándar.

Pero quizás el valor obtenido más importante en este caso fue conseguir métodos que, usando datos muy comunes, como es el registro de tiempos de fabricación de una pieza, devuelvan información muy útil para la toma de decisiones.

#
M

Partimos de la necesidad de estudiar y analizar el comportamiento del proceso de fabricación de elementos específicos, teniendo como datos únicamente los tiempos de fabricación de cada uno de ellos. ¿Es posible obtener información útil sólo con los tiempos de fabricación? Por supuesto que si. El tiempo de fabricación es un indicador claro de multitud de situaciones, pero fundamentalmente se trata de una variable que se ve muy afectada por las posibles anomalías que sufre el proceso en cualquier área.

Tanto si un operario tiene un problema a la hora de ejecutar una operación debido a que no ha sido formado adecuadamente, como si se ha producido un problema logístico a la hora de despachar los materiales necesarios para realizar la tarea, el tiempo de fabricación se verá afectado de manera directa.

Sin embargo, el tiempo de fabricación tiende a ser lo más parecido posible al tiempo estimado de fabricación para cada tarea. Esto hace que, por su propia naturaleza, la distribución de los tiempos de fabricación sea estacionaria, lo que la hace ideal para poder detectar anomalías, tendencias y fluctuaciones, así como para poder predecir sus valores futuros.

El objetivo es analizar y tratar de explicar anomalías y tendencias en el proceso de fabricación de unos elementos contando tan sólo con el tiempo de fabricación como variable principal. Al mismo tiempo, se pretende aprovechar este análisis para poder llevar a cabo previsiones.

Determinando unidades de trabajo análogas. El primer problema a resolver es determinar aquellas unidades de trabajo que sean análogas las unas con las otras, de manera que se puedan comparar. En industria manufacturera se suele trabajar con el concepto de orden de producción que se ejecuta sobre un determinado elemento. Sin embargo, una orden de producción suele estar formada por un conjunto de operaciones, aquellas que hay que llevar a cabo sobre el material. En este caso, son las operaciones las que determinan la unidad de trabajo y no las órdenes de producción. Es el tiempo de ejecución de una misma operación a lo largo del tiempo lo que podemos estudiar como una serie temporal.

Análisis autoregresivo y métodos estocásticos. Existen multitud de métodos para el análisis autoregresivo (AR), pero centrándonos en métodos estocásticos, existen una serie de modelos basados en AR que son muy útiles, fáciles de implementar y que, normalmente, arrojan buenos resultados para este tipo de estudios. Se trata de los Modelos de Autorregresión con Medias Móviles (ARMA), que añaden un modelo de efecto por medias móviles al básico de autorregresión; los Modelos de Autorregresión Integrados con Médias Móviles (ARIMA), que incluyen un componente para la corrección de series no estacionarias; o los modelos Estacionales de Autorregresión Integrados con Médias Móviles (SARIMA), donde se incluye la posibilidad de estudiar series que fluctúan a lo largo de diferentes estaciones.

Una solución: metodología Box-Jenkins. La solución a nuestro problema pasa por aplicar la metodología Box-Jenkins, fundamentada en la identificación de los modelos candidatos y la estimación de sus parámetros, y en el análisis de la bondad de ajuste del modelo a través del estudio de los residuos, conocido como ruido blanco.

El estudio de series temporales no sólo es útil para la obtención de modelos de previsión de valores, sino también para la detección de anomalías. En nuestro caso de estudio se obtuvo un método por el cual, para cada una de las operaciones bajo análisis, se obtiene el valor estimado del tiempo de fabricación para la próxima pieza.

Pero, al mismo tiempo, para cada valor observado, y dependiendo de la diferencia entre dicho valor y el previsto por el modelo, se puede establecer un mecanismo muy versátil para la detección de anomalías.

En nuestro caso, se usó este método para la implementación de un mecanismo por el cual, una vez registrado el tiempo real de fabricación de una pieza, y comparándolo con el que en su día se estimó, se considere una anomalía o no dependiendo de si la diferencia es mayor a la estándar.

Pero quizás el valor obtenido más importante en este caso fue conseguir métodos que, usando datos muy comunes, como es el registro de tiempos de fabricación de una pieza, devuelvan información muy útil para la toma de decisiones.